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Linear approximation in a new theory of gravity 

R B Mann and J W Moffat 
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada 

Received 10 November 1980 

Abstract. A weak-field expansion is developed for a new theory of gravity, based on a 
Hermitian nonsymmetric g,”. Plane wave solutions exist for both the symmetric and skew 
parts of gWv. The symmetric part of g,, is associated with the spin-2 graviton, while the skew 
part is related to a massless spin-0 boson called the ‘skewon’. In the linear approximation 
the Eotvos experiment is not violated. The one-boson exchange graph is calculated. Only 
quadrupole and higher poles contribute to gravitational radiation. 

1. Introduction 

A new theory of gravity has been proposed (Moffatt 1979,1980), in which the structure 
of space-time is non-Riemannian and the metric g,, is Hermitian. The field equations 
have a rigorous spherically symmetric static solution which is world-line-complete 
(non-singular) for certain ranges of the two constants of integration. Several other 
solutions to the field equations, both exact (Moffatt 1979, Kunstatter eta1 1979,1980) 
and approximate (Mann and Moffatt 1981), have been developed. 

In this paper, it is shown that radiative solutions to the field equations exist. These 
solutions do not violate the Eotvos experiment (Braginski and Panov 1971). Plane 
wave solutions are developed, and an expression for the energy-momentum tensor of 
such waves is given. The antisymmetric part of g,, has a physical part of helicity zero; 
we call the corresponding particle a ‘skewon’. For matter sources skewons do not 
contribute to the energy-momentum tensor. 

The field equations of the theory are (Moffatt 1980) 

Here T,, is the generalised Hermitian energy-momentum tensor, which is the sum of 
-momentum tensors for matter and for other sources (e.g. electromagnetic), 

the GN = -gSW is a conserved matter current, corresponding to the number density of 
fermions (Moffatt 1980), and A:, and r:, are Hermitian connections, related by 

r;,= A;,-D;,(s) (1.4) 
where D;,(S) depends only on S’ and gwU. If Sw = 0, corresponding to the absence of 
fermion sources, then A t u  = r;,. The Hermitian tensor R,,(r) is given by 

R , m  = r:u,o - i(r?wo),y+ r$YP).IL) + r;,r%- r Z s U .  (1.5) 
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W, is a pure imaginary vector gauge field, formed from an affine connection W i u .  
These are related to ri,, by 

w;,, = r;“-%;w,, 
W” = w,ga,. 

These two equations show that T, = I$,,] = 0. Finally, 

g,” = JTX,” 

where g is the determinant of g,,,. 
The conservation laws for G” and sWy are 

w,, = 0 

(gvpEUa + g,u&a”),, - g,“,ps~u +: w[p,y]G” = 0. 

g[~”],,,” = 0 

and 

These equations are respectively related to the identities 

and 

(1.9) 

(1.10) 

(1.11) 

(g“”G,,ir) + g”aGYP(r)),a + g ” ” , p @ , . y ( r )  = 0 (1.12) 

where 

GKY(r )  = (RI IY(r)  --kWvR(r)&. (1.13) 

The field equations (1,1)-( 1.3) are invariant under the gauge transformation 

WL = W, +A, ,  (1.14) 

where A is a pure imaginary arbitrary scalar field. 
The signature of the metric is (---+) and we use units where G = c = 1. 

2. Weak-field expansion 

We consider a weak gravitational field, with the metric given by 

g,” = q , u  + h,v (2.1) 

where h,, is a Hermitian tensor, IhFUl<< 1, and 7,” is the usual Minkowski metric 
diag (-1, -1, -1, +l). We shall solve the field equations to lowest order in h,,. Raising 
and lowering is done using qFY, so that 

g F y =  q I *” -hWY+O(h2)  (2.2) 

h@” = qpAqu”hmA (2.3) 

and h”” is a Hermitian tensor. 
Equation (1.1) may be solved for A;,,: 

= ?  A T  ,” 2 7  (huu,, + h,,,, -hu,,V) + O(h2) .  (2.4) 

D;, is found using ( l . l ) ,  (1.2) and (1.4). A calculation gives 

D i u  = $(8th[,p13’ -SihL,pl”) (2.5) 
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where we have used the notation 

(2.6) , P =  6- 
h[,PI - v h[llPl,u. 

From Ai, ,  and DkY we obtain 

(2.7) r” =1 277 (huu,w +h,,y-h,,,,)-3(sr;h[,pi.p - S i h ~ , p l ’ ~ ) .  

Substituting l?iy into (1.3), the field equations (1.2) and (1.3) become 

hl,pl*’ = 4 d +  (2.8) 

= - $ W C ~ , . I +  8r(Tll,,  -$qfiYT) (2.9) 

h q @”h,” T qp7CLVT,y. (2.10) 

, y  = 0. (2.11) 

1 1 - i ( O h y p  - h(yu)3u,LL - h(CLu)’u,y + h+,, - ~ h [ f i ~ ~ ’ u , v  + ~ h ~ y u ~ ’ u , / I )  

where 

To lowest order, the conservation law (1.10) is 
T(’IY) 

Equations (1.12) and (1.13) are, to lowest order in h, 

(2.12) 

Equations (2.11) and (2.12) are automatically satisfied by (2.9), as is easily verified. 
Equation (2.8) clearly satisfies (1.9) and (1.11). 

1 R(,u)’u = 2R+. 

A gauge transformation of the form 

hLy = h,, - - (2.13) 

leaves equations (2.8) and (2.9) invariant. Equation (2.13) is the weak-field form of a 
general coordinate transformation 

X ” l  = X ’ ’ L ( X ~ ) = X I L + & ~ ( X )  (2.14) 

and reflects the general covariance of the field equations in the weak-field limit. 
By choosing harmonic coordinates 

g+’r;v = o (2.15) 

or 

h(ull)’w = (2.16) 

the field equations (2.8)-(2.9) become 

(2.17) 

(2.18) 

(2.19) 

Equation (2.18) is identical to that of general relativity and has solutions of the form 
(Weinberg 1972) 

(2.20) T(,u,(~’, t -  / x - x ’ ~ ) - $ ~ , ~ T ( x ’ ,  t - l x - x ‘ l )  
h(,,,)(x, t )  = 4 d3x’ 

/ x  -x‘I 
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Equations (2.17) and (2.19) must be solved for h[,,,] and W,. The solutions are, with 
W,.” = 0 ,  

W,(X, t ) = - 8 ~ S , ( x ,  t ) - 6 ~ B , ( x ,  t )  (2.21) 

and 

(2.22) T [ y w ] ( X ‘ ,  t - lx -’I) -4 d3x’ I /x - X ’ J  I Ix -x ‘J  
B [ , , ~ ] ( X ’ ,  t -  ix -4) -2 d3x’ 

where 

T[,wjw(x’, t -  /x -x’l) 
/x  -XI1 

(2.23) 

The interesting feature emerges that IqILy) and h [ , w ~  propagate at the velocity of light, 
while W, has a part that propagates and another part that is a contact term. 

3. Plane waves 

In free space the field equations become 

Oh(,,, = 0 (3.1) 

(3.2) Oh[,”] = 3W[W,,l 

h[,w]3w = 0. (3.3) 

4 

The general solution of (3.1) is identical to that of general relativity. We get the plane 
wave solution 

h(,v)(x) = e(,,) eXP(ikAXA) + e*(,w) eXP(-ikd)  (3.4) 

k,k” = 0. (3.5) 

with 

Because of equation (2.16) we also have 

kl*e(,w) = 2rl  e(Apjkw =Aw. (3.6) 1 U3 1 

Equations (3.2) and (3.3) yield 

ow,=o (3.7) 

with W;” = 0, being the gauge chosen for W,. Clearly W, has Maxwell-type plane 
wave solutions. However, because of equation (3.2), the Green’s function solution for 
h ~ , ~ ]  diverges unless W, = A,,, where A is a solution of the massless Klein-Gordon 
equation. Thus (3.2) becomes 

Oh[,w] = 0 (3.8) 
giving 

(3.9) h[,Y1 = e[,w] eXp(ikAXA) - e*[,”] eXp(-ikAX^) 
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where (3.5) holds, and 

k ’e[,,] = 0 (3.10) 

because of (3.3). 
Equations (3.6) and (3.10) respectively represent four constraints on the polarisa- 

tion tensor e(,,) and three constraints on the polarisation tensor e[,,]. However, only 
two components of e(,,) and one component of e[,,] are physically significant. This is 
seen by considering two fields a,  and b,, where 

Ub,=O 

Oa, - (a;”) , ,  = 0. 

(3.11) 

(3.12) 

By writing 

h’(,”) = h(,”)+ b(w4 (3.13) 

and 

h’I,ul= hr,ulfa[,,ul (3.14) 

we see that equations (3,l)-(3.3) and (2.16) are true for h‘,,. The field a ,  is a 
Maxwell-type field, and so has only two degrees of freedom. Four more components of 

can be made to vanish by (3.13), and two more components of h[,,l can be made to 
vanish by (3.14). Thus h(,,) has only two physically significant components, while h[,”] 
has only one component. 

As in general relativity, the field h(,”) has helicity 2, as is easily shown by considering 
a plane wave in the 2 direction (Weinberg 1972). 

Similarly, a rotation about the z axis for a wave of h~,,,] in the t direction gives 

d’, = exp(*iO)d, (3.15) 

~ ’ [ I Z I  = ~ [ I Z I  (3.16) 

where 

e[431= 0 (3.17) 

d, = q 1 4 1  F ie[i41= -(e[131 T ie[z31) (3.18) 

and equation (3.10) has been used. Thus h ~ , ~ ]  has components d, of helicity *l, and 
el121 of helicity zero. However, using (3.12) and (3.14) e [ ~ ]  and can be made zero. 
Thus only q 1 2 ]  is physically significant, and h[ILu~ is a spin-0 field. 

It seems natural to call the spin-2 particle associated with h(cLy) the graviton, since 
h(,”) is identical to general relativity. We call the spin-0 particle associated with h[,”] 
the ‘skewon’. 

It is necessary to calculate the energy-momentum tensor of the plane waves. This is 
done using the energy-momentum pseudotensor t,, in the new theory. Analogous to 
general relativity (Weinberg 1972, Kunstatter and Moffatt 1979), we have 

(3.19) 
2 

where R N L Y ( r )  is R,”(r) to O(h2).  The expression for tlLY is very complicated. However, 
since (tu”) is all that is measured in practice, we shall calculate it instead. Averaging 
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over space and time in a region much larger than /k/-’, we find after a tedious calculation 

(3.20) 

This expression is most easily seen to be positive definite using a plane wave travelling in 
the i direction. Using equations (3.15)-(3.18) we get 

( t K y )  = E ( e ‘ P v )  k k  * 1 Pv 2 e[Pvl  * e ( P v ) - i I 7 7  e(Pv)l - e [&I). 1677 

(3.21) 

for the energy-momentum ‘Poynting tensor’ in the new theory for a wave moving in the 
2 direction. 

It is seen that plane gravitational waves have, in general, a higher energy content per 
unit volume than their general relativity counterparts, the extra amount coming from 
the skewon contribution. It will be shown in the next section that, for spinless matter 
sources only, the skewon contribution vanishes. 

4. Radiation of gravitational waves 

In analysing the way in 
consider the sources TWy 
and S”(x, U ) .  These are 

which gravitational waves are generated, it is convenient to 
(x) and S’”(x) in terms of their Fourier components TWu(x, w )  
related by 

Twy(x, t )  = J d o  T,,(x, w )  exp(iwt)+cc (4.1) 
0 

io 

S”(x, t )  = Io dw S”(x, w )  exp(iwt) -cc 

where ‘cc’ means complex conjugate. 
From equation (2.20) it is easy to see that the symmetric part of h,, is 

(4.2) 

where we are considering only a single Fourier component of T(KLY). In the ‘wave zone’, 
where the factor (2 =x/r) ,  

/ x -x ’ j= r - j ?*x’+ .  . . (4.4) 

and we neglect terms O(l/r*).  A calculation gives 

h(,u) = - exp[i(wt - wr)] 

This can be rewritten as 

I 4 
r 

d3x‘(T(,y)(x’, w )  -$q,,,T(x’, U ) )  exp(iw2 ex’) + CC. (4.5) 
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and 

T,,(k, U ) =  J d3x’ T,,(x’, w )  exp(ik*x) 

where k ,  is a wavevector given by 

(4.8) 

k o z u  k ~ w i .  (4.9) 

The large-r limit gives the plane wave solution for h(,,). The above results are the same 
as in general relativity (Weinberg 1972). 

We now consider W,. From § 2, equation (2.21) we see that there is a part of W,, 
namely B,, that appears to propagate. Using equations (2.23) and (4.1) we get 

exp(iwt) - cc) , d3x’ T[,Ul(X’, B,(x, t )  =-a”( 1 
l r  Ix -XI (  

In the wave zone we have 

B,(x, t )  = 8’[b[,,](~, 0) exp(ikAxA) -cc] 
with 

(4.10) 

(4.11) 

(4.12) 

and T[,,](k, w )  is given by equation (4.8). Since we neglect all terms of O(l/r2) and 
higher, equation (4.11) becomes 

B,(x, t )  = ik”b[,,l exp(ik,x*)-cc. (4.13) 

However, this means that there exist plane waves for W,, in contradiction to what was 
said in § 3. In order to avoid this possibility, we must have either 

kAb[,,] = 0 (4.14) 

(4.15) 

Equation (4.14) merely says that T[,,I~~ = 0. Thus in the linear approximation we have 

T[,LYI = A C , , Y l +  C [ , Y I  (4.16) 

with 

C[,,jY = 0 A,’, = 0. (4.17) 

A, and CL,,] are sources independent of h,, or W,. We now have 

W,((X, t )  = -8rS , (x ,  t )+  12rA,(x, t )  (4.18) 

and so W, is a contact term. Thus the vector W, does not propagate in the linear 
approximation. In higher orders this is not the case (Moffatt 1980). 

Because of (4.16), equation (2.22) now becomes 

(4.19) 
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Suppose  CL^,] = 0. Then, using equation (4.2) and considering only one Fourier 
component, we get 

Sr(x’ ,  U )  exp[iw(t- Ix -x’/)] 
Jx -x’l 

h [ r L y ~  = -au( d3x’ 

S v ( x ’ ,  U )  exp[iw(t-/x-x’/)] 
+a,( I d3x’ /x -x‘/  

In the wave zone this becomes 

h[,yl = e[,,l(x, w )  exp(ikAxA)--cc 

where 

(4.20) 

(4.21) 

1 
~ C , ~ I ( X ,  0) =;(k,S,(k, u ) - k , S , ( k ,  U ) )  (4.22) 

with 

S,(k, U )  = d3x’ S,(x’, w )  exp(ik ex’). (4.23) 

The conservation laws (1.9) and (1.10) yield relations for 7’(,”) and S,  

k FT(,v) = 0 k’S, = 0 (4.24) 

which verify equations (3.6) and (3.10). 
The interesting thing about the solution (4.21) is that, although hl,,] propagates 

from generation by S,, it does not contribute to the energy (t””) (equation (3.20)). 
Substitution of equations (4.3) and (4.21) into equation (3.20) yields 

(4.25) 

We have the important result that skewon fields radiated by S ,  make no contribution to 
the energy in the plane wave limit of the linear approximation. The post-Newtonian 
expansion (Mann and Mofiatt 1981) of the theory shows that T [ r y ~ ~ S [ , , y l  for matter 
fields in lowest order. Therefore, as long as 7’[,,,1 is a curl of a matter field only, there can 
be no skewon contribution to (t,”). 

If C[,,] # 0, as may well be the case for spinning matter (Yasskin and Stoeger 1979), 
then there is a skewon contribution to ( t W y )  generated by the second term of (4.19). The 
power per unit solid angle is given by (Weinberg 1972) 

dP/dR=r2x’(ti4) (4.26) 

and so, using equations (3.20), (4.3), and (4.19) in the wave zone, we get 

(4.27) 

Only C[,,] contributes to the power and not A,. 
For C[,,] = 0 we get the result of general relativity. Quadrupole and higher poles 

contribute to the power (Papapetrou 1974), and there is no dipole radiation. The 
skewon fields have a vanishing contribution to the power output. 
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It must be noted that for higher orders the hLFuI and W, fields will make contribu- 
tions to the emitted power. It is only in the linear approximation that h(,,) dominates 
for Cp+y~ = 0. 

5. The propagator 

From equation (4 .27) ,  it is easy to deduce that the one-boson exchange graph is given by 
(Scherk 1979) 

For spinless particles of mass M, m in the static limit we get 

1 6 ~  d = T M m  
4 

(5 .2 )  

which is identical to the result of general relativity. The Eotvos experiment (Braginski 
and Panov 1971) is not violated, since only spin-2 gravitons contribute in this case?. 

It is possible for other forces to enter in via CE,~]; these forces will be realised 
through skewon exchange. For example, if  CL,^] is related to the intrinsic spin 

(YE ’upuJp,u (5.3) c b v l =  

where J, is the intrinsic spin pseudovector and (Y is a constant, then (5 .2 )  becomes 

1 6 ~  
4 

d = T ( M m + 2 a 2 q 2 J a j )  (5 .4 )  

for two spins 3, j .  We get a spin-dependent force entering in at the one-boson exchange 
level. The gravitational force is carried by the graviton, and the spin force by the 
skewon. 

We need not commit ourselves to any particular C[FLv~ and, in fact, for spinless matter 
we set C[c(yl = 0. The fundamental matter fields are T(,u) and S,. S, does not contribute 
to the one-boson exchange graph. 

Finally, we write down the propagator: 

Equation (5.1) then follows from ( 5 . 5 )  and 

.d = T””D~Yapta*.  ( 5 . 6 )  

6. Discussion of results 

In the linear approximation to the nonsymmetric Hermitian theory of gravity, the field 
equations for g(,,) and g[ , , ]  decouple. The field equations for g(,v) correspond to those 

t There will be contact interactions of the form S,S’ that have to be included in the static limit. Moreover, 
only the Hermitian (complex) version of the nonsymmetric theory is free of ghosts. For details, see Mann et al 
(1981). 
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of general relativity for a spin-2 graviton, while the equations for g [ c L y ~  are not 
Maxwell-type equations, but equations describing a spin-0 massless particle that does 
not propagate in free space for spinless sources with non-vanishing fermion number 
current density ‘3”. Since there is no static Coulomb-type force between two S’ 
currents (Mann et a1 1981), the Eotvos experiment is not violated, allowing the 
universal coupling constant a to be of order -10-’’cm or less. Since the fermion 
number F defined by (Moffatt 1980) 

is conserved and the measure of macroscopic coupling is / I /  =a&, then for large 
systems like the sun with F a  - los7 the repulsive (anti-gravity) forces generated in 
higher orders of approximation can produce significant effects, e.g. prevent gravita- 
tional collapse to a black hole for 111 > 2 m. 

We have also found that gravitational radiation in the new theory is generated by 
quadrupole and higher multipole moments (no dipole radiation) as in general relativity. 
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